Learning Beyond | Best Certification Courses For Civil Engineers

Design

DESIGN-OF-SINGLY-REINFORCED-BEAM-1

MANUAL DESIGN OF SINGLY REINFORCED BEAM

In this blog, you will learn step by step about the design of singly reinforced beam of first floor of G+5 building procedure using I.S. 456:2000. For daily blogs, subscribe to our blog page and learn complete information about the structural engineering industry Given :- (SINGLY REINFORCED BEAM) 1) Grade of Concrete = M202) Grade of Steel = Fe5003) Clear Cover to Reinforcement (c) = 25 mm4) Length of Beam = 2660 mm5) Unit Weight of Concrete = 25 kN/m26) Slab Dimensions :- S1 = (2660 mm X 2890 mm) & S2 = (940 mm X 2660 mm)7) Floor to Floor Height (H) = 3000 mm Step 1 :- Trial Dimension of The Beam :- Assume the Width of The Beam (b) = 230 mmEffective Depth of Beam (d) = (L/10) to (L/15) = (2660/10) to (2660/15)                                               = 266 mm to 177.33 mmTake, d = 300 mm  …(Rounded off on Higher Side)Assume, 12 mm Diameter Bars are to be Provided  at a Clear Cover of 25 mm.Therefore, D = 300 + (12/2) + 25 = 331 mm ≈ 375 mm …(Rounded off on Higher Side)Therefore, Effective Depth of Beam Provided (d) = 375 – (12/2) – 25 = 344 mm  Step 2 :- Effective Span (Le) :- Le = L + d = 2660 + 344 = 3004 mm Step 3 :- Load Calculations :- i) Super Imposed Dead Load (SIDL) :-Wall Load = Wall Thickness X Floor to Floor Height X Unit Weight of Bricks                   = (0.150 X 3 X 20) = 9 kN/m                  …(No Deduction of Depth of Beam is Made From Floor to Floor Height)ii) Slab Load Transferring on Beam :-Slab S2 :-a) Self Weight of Slab (DL) = D X Unit Weight of Concrete                                             = 0.125 X 25                                             = 3.125 kN/m2b) Live Load (LL) = 2 kN/m2  …[Refer Table No. 1 , Page No. 7 , I.S. 875  (Part 2) : 1987]c) Super Imposed Dead Load (SIDL) =Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)                         + Sunk  Load(325mm Thk.)                     = (0.05 X 24) + (0.01 X 22) + (0.325 X 20)…[Refer I.S. 875 (Part 1) :1987]                     = 7.92 kN/m2                     ≈ 8 kN/m2Total Load of Slab S2 (w)  = 3.125 + 2 + 8 = 13.125 kN/m2 Rectangular Load of Slab S2 is Transferring  on Beam B6 Because S2 Slab is One Way Slab Which is Given by,WS2 = [(w. Lx) / 2] = [(13.125 X 1.17) / 2] = 7.678 kN/mSlab S1 :-a) Self Weight of Slab (DL) = D X Unit Weight of Concrete                                             = 0.125 X 25                                             = 3.125 kN/m2b) Live Load (LL) = 2 kN/m2  …[Refer Table No. 1 , Page No. 7 , I.S. 875  (Part 2) : 1987]c) Super Imposed Dead Load (SIDL) =Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)                     = (0.05 X 24) + (0.01 X 22)  …[Refer I.S. 875 (Part 1) : 1987]                     = 1.42kN/m2 ≈ 1.5 kN/m2Total Load of Slab S1 (w)  = 3.125 + 2 + 1.5 = 6.625 kN/m2 Triangular Load of Slab S1 is Transferring  on Beam B6 Because S1 Slab is Two Way Slab Which is Given by,WS1 = [(w. Lx)/3] = [(6.625 X 2.66)/3) = 5.874 kN/mTherefore, Total Load of Slabs Transfering on Beam B6 = WS1 + WS2 = 5.874+7.678                                                                                                            = 13.55  kN/m iii) Self Weight of Beam (DL) = b X D X Unit Weight of Concrete                                                 = 0.230 X 0.375 X 25                                                 = 2.156 kN/mTotal Load on Beam B6 = Wall Load + Slab load + Self Wt. of Beam                                       =  9 + 13.55 + 2.156 = 24.706 kN/mUltimate Load (Wu) = 24.706 X 1.5 = 37.059 kN/m. Step 4 :- Bending Moment (Mu) :- Mu= Wu . Le2/ 8 = 37.059 X 3.0042 / 8 = 41.8 kN.m Step 5 :- Check For Depth :-  Equate   Mumax & Mulim,              Mumax =  Mulim41.8 X 106 = 0.133 X fck X b X dreq2               41.8 X 106 = 0.133 X 20 X 230 X dreq2dreq= 261.38 mm  < 344mm   …(dreq< dprovided)              Therefore,  Safe Step 6 :- Area of Steel Calculations  (Ast) :- [Refer Cl. No. 26.5.1.1 (a) & (b),Page No. 46 & 47,I.S. 456 : 2000] Therefore,  Provide  4-T12  Bars.Therefore, Astprovided = (One Bar Area). (No. of Bars to be Provided)                                 = π/4 X〖 12〗^2  X 4                 Astprovided  = 452.45 mm2                                 >Astmin (134.504 mm2)   …ok                                >Astmax (3450 mm2)        …ok Step 7 :- Check For Shear :- Codal Provisions for Shear :- [Refer Cl. No. 26.5.1.6, Page No. 48 & Cl. No. 40.1, 40.3, Page No. 72 of  I.S. 456 : 2000] i) Maximum Shear Force (Vu) :-Vu= Wu . Le/ 2  ….( For Simply Supported Beam )     =  [(37.059 X 3.004) / 2]     = 55.662 kN ii) Nominal Shear Stress (τv) :-τv = Vu / b.d    = [(55.662 X 103) / (230 X 344)]= 0.7 N/mm2 iii) % of Steel (Pt) :-Pt=  [(100. Astprovided) / b.d]Therefore , Pt = (100 X 452.45) / (230 X 344) = 0.57 % iv) Design Shear Stress (τc) :- (Refer Table No. 19, Page No.73, I.S. 456 : 2000)By Interpolation,τc = [0.48 + {(0.56-0.48) / (0.75-0.5)}X (0.57-0.5)]    = 0.5  N/mm2  < 0.7 N/mm2As, τc < τvWe Need to Design For Shear Reinforcement. Pt τc (For M20) 0.5 0.48 0.57 ? 0.75 0.56 As per Table No. 20 , Page No. 73 , I.S. 456 : 2000Maximum Shear Stress for M20 Grade Concrete is, τcmax= 2.8 N/mm2Therefore,  Beam B6 is Safe in Shear. Step 8 :- Design of Shear Reinforcement :- i) Shear Resisted by Stirrups (Vus) :-Vus= Vu – Vuc ….( For Simply Supported Beam )      = Vu – τc .b.d      = 55.662 X 103 – 0.5 X 230 X 344      = 16102 N      = 16.102 kNProvide 2-Legged 8mm Diameter StirrupsAsv = 2 X π/4 X 64 = 100.544 mm2 ii) Spacing of Stirrups (Sv) :- iii) Check For Stirrups Spacing :-Spacing of Stirrups Should Not be Greater Than Minimum of The Following,Spacing of Stirrups (Sv) = Min. of    i) 0.75d                                                         ii) 300 mmTherefore,

MANUAL DESIGN OF SINGLY REINFORCED BEAM Read More »

Manual Design Of One Way slab

Manual Design Of One Way Slab

In this blog you will learn about Design of one way slab of first floor of G + 5 building procedure using I.S. 456:2000. Learn Complete Structural Engineering Industry Requirements Practically With Our Daily Blogs Series Given:- 1) Grade of Concrete = M202) Grade of Steel = Fe5003) Clear Cover to Reinforcement (c) = 20 mm4) Dimension of Slab =  (940mm X 2660 mm)5) Assume Beam Support (Bearing) = 230 mm6) Unit Weight of Concrete = 25 kN/m2 Step 1 :-Aspect Ratio (Refer Cl. No. D-1.11, Page No. 90 , I.S. 456:2000)Lx = 940 mm & Ly = 2660 mm  …(Given)Therefore, Ly/Lx = 2660/940 = 2.82 > 2   …(One Way Slab) Step 2 :-Trial Depth of Slab (D) Basic Value (B.V.) = L / D = 20Assume % of Steel = 0.25 %Therefore, Modification Factor (M.F.) = 1.35 …(Refer Fig. 4 , Page No. 38 I.S.456:2000)Therefore, Effective Depth (d) = SPAN/B.V.X.N.F. =  [940/ (20 X 1.35)] = 34.81 mmAssume Bars to be Provided of Diameter = 8 mm & Provide Clear Cover to Reinforcement = 20 mm Therefore, Overall Depth of Slab (D) = d + c + (8/2) = 34.81 + 20 + 4 = 58.81 mmAssume , Overall Depth of Slab (D)  = 125 mmTherefore, Effective Depth Provided (dprovided) = D – c – (8/2) = 125 – 20 – 4 = 101 mm Step 3 :-Effective Span (le)                Minimum of,       i) Le = Lx + Bearing = 940 + 230 = 1170 mm                                          ii) Le = Lx + d = 940 + 101 = 1041 mm                Therefore,  Effective Span (Le) = 1041 mm Step 4 :- Load Calculations Consider 1 m Strip of Slab,i) Self Weight of Slab (DL) = D X Unit Weight of Concrete                                             = 0.125 X 25                                             = 3.125 kN/m2ii) Live Load (LL) = 2 kN/m2  …[Refer Table No. 1 , Page No. 7, I.S. 875  (Part 2) : 1987]iii) Super Imposed Dead Load (SIDL) =Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.) + Sunk  Load(325 mm Thk.)                     = (0.05 X 24) + (0.01 X 22) + (0.325 X 20)…[Refer I.S. 875 (Part 1) :1987]                     = 7.92 kN/m2                     ≈ 8 kN/m2Total Load (W) = 3.125 + 2 + 8                          = 13.125 kN/m2Total Ultimate Load (Wu) = 13.125X 1.5 ≈ 19.7 kN/m2 Step 5 :- Maximum Design Bending Moment (Mumax) Refer Table No. 26, Page No. 90 , I.S. 456:2000 Span Moment :- Mumax= Wu . le2 / 8Mumax = 19.7 X  1.0412 / 8 Mumax =  2.668 kN.mTherefore ,Mumax= 2.668 kN.m Step 6 :- Check For Depth               Equate   Mumax & Mulim,              Mumax =  Mulim               2.668 X 106 = 0.133 X fck X b X dreq2               2.668 X 106 = 0.133 X 20 X 1000 X dreq2dreq= 31.67 mm  < 101mm   …(dreq< dprovided)              Therefore,  Safe Step 7 :- Area of Steel Calculation :- Spacing of Bars :- As per Cl. No. 26.3.3 (b) , Page No. 46 , I.S. 456 : 2000Maximum SpacingBetween Bars          < Minimum of   i) 3d                                                          ii) 300 mm Therefore,Maximum Spacing Between Bars = i) 3 X 101 = 303 mm                                                         ii) 300 mmNote:- Generally We Provide 200 mm Maximum Spacing Between Bars.         = 61.7 mm2Spacing of Bars = (Area of One Bar / Area of Steel) . 1000Consider Bars to Provide are of Diameter 8mm.Therefore, Spacing of Bars = [(π/4) X 82 / 61.7] X 1000 = 814.78 mmNote:- Generally We Provide 200 mm Maximum Spacing Between Bars. Therefore, Provide 8 mm Diameter Bars at 200 mm c/c. Step 8 :- Distribution Steel Calculation :- Dst = 0.12 % of the Gross Area of Slab     …(For Fe500)Therefore, Dst= (0.12/100) X Ag                  Dst= (0.12/100) . b . D  …(Where, b = 1000 mm &                                                      D = Overall Depth of Slab)                  Dst= (0.12/100) X 1000 X 125                       = 150 mm2Spacing of Bars = (Area of One Bar / Area of Steel) . 1000Consider Bars to be Provide are of Diameter 8 mm.Therefore, Spacing of Bars = [(π/4) X 82 / 150] X 1000 = 335.15 mmMaximum SpacingBetween Bars          < Minimum of   i) 5d  = 5 X 101 = 505 mm                                                          ii) 450 mmNote:- Generally We Provide 200 mm Maximum Spacing Between Bars. Therefore, Provide 8 mm Diameter Bars at 200 mm c/c. Step 9 :- Check For Deflection :- % of Steel = Pt = 100. Astreq / b.dTherefore, Pt = (100 X 61.7) / (1000 X 101) = 0.061 % Therefore,  Fs = 0.58 X 500 X (61.7 / 251.36) = 71.18  N/mm2% of Steel Provided = Pt = 100. Astprovided  / b.dTherefore , Pt = (100 X 251.36) / (1000 X 101) = 0.248 %M.F. = 2.0    As, dreq < dprovided    …Safe for Deflection. REINFORCEMENT DETAILS :-

Manual Design Of One Way Slab Read More »

critical-section-of-one-way-shear

Manual Design Of Footing Of G+5 Building Using I.S. 456:2000

In this blog you will learn Manual Design Of Footing of G+5 Building Using I.S. 456:2000 with the help of example. Step by step guid to clear conceptLearn Complete Structural Engineering Indusry Requirements Practically With Our Daily Blogs Series Given: Load Calculation (Step 1): Load From Column      = 1500 kN Self Weight of Footing = Assume 10% of the column load                                     = (10/100) X 1500                                     = 150 kN  ———————————————————–Total Weight (W)         = 1650 kN Area of Footing (A) (Step 2): Area of Footing (A) = Total Weight (W) / Net Soil Bearing Capcity (S.B.C.)= 1650 / 300= 5.5 m2Take Equal Projections From Both Sides, 5.5 = (0.6 + 2x) . (0.3 + 2x)5.5 = 0.18 +1.2x + 0.6x + 4×25.5 = 0.18 +1.8x + 4×2Therefore, by Solving Above Equation,x = 0.95 mTake Projection of 1 m on Both Side. Therfore, Size of Footing = (0.3+ 2 X 1 ) & (0.6 + 2 X 1) = 2.3 X 2.6 mTherefore Area of Footing Provided = 2.3 X 2.6 = 5.98 m2 Upward Soil Pressure (Pau) (Step 3): Pau = (Factored Load of Column / Actual Area of Footing Provided)     = 1.5 X 1500 / 5.98Pau= 376.25 kN/m2 Bending Moment (B.M.) (Step 4): The Critical Section for B.M. Along the Column Face as Shown in the Figure 2, From X-axis:      = (2.6 – 0.6) / 2     = 1 mConsider  a Strip of 1m.Therefore, Mux = [Pau X 1 X (Cx2/2)]                         = [376.25 X 1 X (12 /2)]                 Mux = 188.125  kN.m From Y-axis:      = (2.3 – 0.3) / 2     = 1 mTherefore, Muy = [Pau X 1 X (Cy2/2)]                         = [376.25 X 1 X (12 /2)]                  Muy = 188.125  kN.m Depth of Footing Required (dreq) (Step 5): Equate The Maximum Bending Moment (Max. of Mux & Muy) With Limiting Moment of Resistance ,Consider a Strip of 1m.Mumax= Mulim188.125 X 106 = 0.133 fck.b.dreq2188.125 X 106 = 0.133 X 20 X 1000 X dreq2dreq = 265.94 mmProvide 12 mm Diameter Bars at a Clear Cover of 50 mm.Therefore, Overall Depth (D) = 265.94 + 50 + (12/2)                                                = 321.94 mm ≈ 600 mm …(rounded -off on higher side) Overall Depth (D) = 450 mmTherefore, Effective Depth Provided (dprovided) =  600 – 50 – (12/2) = 544 mm Area of Steel Calculation (Ast) (Step 6): Astx Along X-Direction: Astx = 826.8 mm2Provide 12 mm Diameter Bars.Spacing = (π/4 × 12² ÷ 826.8) ×100                        = 136.8 mm ≈ 125 mmProvide 12 mm Diameter Bars @ 125 mm c/c Asty Along Y-Direction: Asty = 826.8 mm2Provide 12 mm Diameter Bars.Spacing = (π/4 × 12² ÷ 826.8) ×100                        = 136.8 mm ≈ 100 mmProvide 12 mm Diameter Bars @ 100 mm c/c Check For One Way Shear (Step 7): The Critical Section for One Way Shear is Taken at a Distance of ‘d’ From Column Periphery. The Offset x = Cx – d = 1 – 0.544 = 0.456 mSimilarly,  y = Cy – d  = 1 – 0.544 = 0.456 mDepth of Footing at Critical Section (d’) = 544 mm Shear Force Along X-Direction :-Vux = x . L . Pau = 0.456 X 1 X 376.25 = 171.57 kN Shear Force Along Y-Direction :-Vuy = y . B . Pau = 0.456 X 1 X 376.25 = 171.57 kN Vumax = 209.2 kN Nominal Shear Stress (τv): τv  = Vumax/ b’.d’ = [(171.57 X 103) / (1000 X 544)]  = 0.32 N/mm2 % of Steel (Pt): Pt = 100 Astmax / b’d’ = [(100 X 1130) / (1000 X 544)] = 0.21 % Design Shear Stress (τc): τc =  0.32 N/mm2  > 0.32 N/mm2As, τc > τv    … Safe in One Way Shear Pt τc  ( For M20) <0.15 0.28 0.21 ? 0.25 0.36 Refer Table No. 19, Page No.73, I.S. 456 : 2000 Check For Two Way Shear (Step 8): The Critical Section for Two Way Shear is Taken at a Distance of ‘d/2’ From Column Periphery. Depth of Footing at Critical Section (D’) = 750 mmEffective Depth at Critical Section = d’ = 600 – 50 – (12/2 ) = 544 mmb’ = 2 . Perimeter of Critical Section    = 2 X (1144 + 844)    = 3976 mm Shear Force on Shaded Area is Given by,Vu = (Footing Area – Critical Section Area) . Upward Soil PressureVu = [(2.6 X 2.3) – (1.144 X 0.844)] X 376.25Vu = 1886.7 kN Nominal Shear Stress (τv): τv  = Vumax/ b’. d’ = [(1886.7 X 103) / (3976 X 544)]  = 0.87 N/mm2 Design Shear Stress (τc’): τc‘= ks. (0.25√fck )Where,  ks= Minimum of,    i) 1                                            ii) 0.5 + βc = 0.5 + 0.5 = 1                                             Where, βc = (Breadth / Depth)column = 300 / 600 = 0.5Therefore, ks= 1 Therefore,   τc‘= 1 X (0.25√20) = 1.118 N/mm2   >  0.87 N/mm2As, τc > τv    … Safe in Two Way Shear

Manual Design Of Footing Of G+5 Building Using I.S. 456:2000 Read More »