Learning Beyond | Best Certification Courses For Civil Engineers

MANUAL DESIGN OF SINGLY REINFORCED BEAM

In this blog, you will learn step by step about the design of singly reinforced beam of first floor of G+5 building procedure using I.S. 456:2000. For daily blogs, subscribe to our blog page and learn complete information about the structural engineering industry

DESIGN OF SINGLY REINFORCED BEAM
Design of singly reinforced beam (Fig 1)

Given :- (SINGLY REINFORCED BEAM)

1) Grade of Concrete = M20
2) Grade of Steel = Fe500
3) Clear Cover to Reinforcement (c) = 25 mm
4) Length of Beam = 2660 mm
5) Unit Weight of Concrete = 25 kN/m2
6) Slab Dimensions :- S1 = (2660 mm X 2890 mm) & S2 = (940 mm X 2660 mm)
7) Floor to Floor Height (H) = 3000 mm

Step 1 :- Trial Dimension of The Beam :-

Assume the Width of The Beam (b) = 230 mm
Effective Depth of Beam (d) = (L/10) to (L/15) = (2660/10) to (2660/15)
                                               = 266 mm to 177.33 mm
Take, d = 300 mm  …(Rounded off on Higher Side)
Assume, 12 mm Diameter Bars are to be Provided  at a Clear Cover of 25 mm.
Therefore, D = 300 + (12/2) + 25 = 331 mm ≈ 375 mm …(Rounded off on Higher Side)
Therefore, Effective Depth of Beam Provided (d) = 375 – (12/2) – 25 = 344 mm 

Step 2 :- Effective Span (Le) :-

Le = L + d = 2660 + 344 = 3004 mm

Step 3 :- Load Calculations :-

i) Super Imposed Dead Load (SIDL) :-
Wall Load = Wall Thickness X Floor to Floor Height X Unit Weight of Bricks 
                  = (0.150 X 3 X 20) = 9 kN/m
                  …(No Deduction of Depth of Beam is Made From Floor to Floor Height)
ii) Slab Load Transferring on Beam :-
Slab S2 :-
a) Self Weight of Slab (DL) = D X Unit Weight of Concrete
                                             = 0.125 X 25
                                             = 3.125 kN/m2
b) Live Load (LL) = 2 kN/m…[Refer Table No. 1 , Page No. 7 , I.S. 875  (Part 2) : 1987]
c) Super Imposed Dead Load (SIDL) =
Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)
                         + Sunk  Load(325mm Thk.)
                     = (0.05 X 24) + (0.01 X 22) + (0.325 X 20)…[Refer I.S. 875 (Part 1) :1987]
                     = 7.92 kN/m2
                     ≈ 8 kN/m2
Total Load of Slab S2 (w)  = 3.125 + 2 + 8 = 13.125 kN/m2

Rectangular Load of Slab S2 is Transferring  on Beam B6 Because S2 Slab is One Way Slab Which is Given by,
WS2 = [(w. Lx) / 2] = [(13.125 X 1.17) / 2] = 7.678 kN/m
Slab S1 :-
a) Self Weight of Slab (DL) = D X Unit Weight of Concrete
                                             = 0.125 X 25
                                             = 3.125 kN/m2
b) Live Load (LL) = 2 kN/m…[Refer Table No. 1 , Page No. 7 , I.S. 875  (Part 2) : 1987]
c) Super Imposed Dead Load (SIDL) =
Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)
                     = (0.05 X 24) + (0.01 X 22)  …[Refer I.S. 875 (Part 1) : 1987]
                     = 1.42kN/m2
≈ 1.5 kN/m2
Total Load of Slab S1 (w)  = 3.125 + 2 + 1.5 = 6.625 kN/m2

Triangular Load of Slab S1 is Transferring  on Beam B6 Because S1 Slab is Two Way Slab Which is Given by,
WS1 = [(w. Lx)/3] = [(6.625 X 2.66)/3) = 5.874 kN/m
Therefore, Total Load of Slabs Transfering on Beam B6 = WS1 + WS2 = 5.874+7.678
                                                                                                            = 13.55  kN/m

iii) Self Weight of Beam (DL) = b X D X Unit Weight of Concrete
                                                 = 0.230 X 0.375 X 25
                                                 = 2.156 kN/m
Total Load on Beam B6 = Wall Load + Slab load + Self Wt. of Beam
                                       =  9 + 13.55 + 2.156 = 24.706 kN/m
Ultimate Load (Wu) = 24.706 X 1.5 = 37.059 kN/m.

Step 4 :- Bending Moment (Mu) :-

Mu= Wu . Le2/ 8 = 37.059 X 3.0042 / 8 = 41.8 kN.m

Step 5 :- Check For Depth :-

 Equate   Mumax & Mulim,
              Mumax =  Mulim
41.8 X 106 = 0.133 X fck X b X dreq2
               41.8 X 106 = 0.133 X 20 X 230 X dreq2
dreq= 261.38 mm  < 344mm   …(dreq< dprovided)
              Therefore,  Safe

Step 6 :- Area of Steel Calculations  (Ast) :-

[Refer Cl. No. 26.5.1.1 (a) & (b),Page No. 46 & 47,I.S. 456 : 2000]

Therefore,  Provide  4-T12  Bars.
Therefore, Astprovided = (One Bar Area). (No. of Bars to be Provided)
                                 = π/4 X〖 12〗^2  X 4
                 Astprovided  = 452.45 mm2
                                 >Astmin (134.504 mm2)   …ok
                                >Astmax (3450 mm2)        …ok

Step 7 :- Check For Shear :-

Codal Provisions for Shear :- [Refer Cl. No. 26.5.1.6, Page No. 48 & Cl. No. 40.1, 40.3, Page No. 72 of  I.S. 456 : 2000]

i) Maximum Shear Force (Vu) :-
Vu= Wu . Le/ 2  ….( For Simply Supported Beam )
     =  [(37.059 X 3.004) / 2]
     = 55.662 kN

ii) Nominal Shear Stress (τv) :-
τv = Vu / b.d
    = [(55.662 X 103) / (230 X 344)]
= 0.7 N/mm2

iii) % of Steel (Pt) :-
Pt=  [(100. Astprovided) / b.d]
Therefore , Pt = (100 X 452.45) / (230 X 344) = 0.57 %

iv) Design Shear Stress (τc) :- (Refer Table No. 19, Page No.73, I.S. 456 : 2000)
By Interpolation,
τc = [0.48 + {(0.56-0.48) / (0.75-0.5)}X (0.57-0.5)]
    = 0.5  N/mm< 0.7 N/mm2
As, τc < τv
We Need to Design For Shear Reinforcement.

Ptτc (For M20)
0.50.48
0.57?
0.750.56

As per Table No. 20 , Page No. 73 , I.S. 456 : 2000
Maximum Shear Stress for M20 Grade Concrete is, τcmax= 2.8 N/mm2
Therefore,  Beam B6 is Safe in Shear.

Step 8 :- Design of Shear Reinforcement :-

i) Shear Resisted by Stirrups (Vus) :-
Vus= Vu – Vuc ….( For Simply Supported Beam )
      = Vu – τc .b.d
      = 55.662 X 103 – 0.5 X 230 X 344
      = 16102 N
      = 16.102 kN
Provide 2-Legged 8mm Diameter Stirrups
Asv = 2 X π/4 X 64 = 100.544 mm2

ii) Spacing of Stirrups (Sv) :-

iii) Check For Stirrups Spacing :-
Spacing of Stirrups Should Not be Greater Than Minimum of The Following,
Spacing of Stirrups (Sv) = Min. of    i) 0.75d
                                                         ii) 300 mm
Therefore, Spacing of Stirrups (Sv) =  i) 0.75 X 344 = 258 mm
                                                                     Or
                                                            ii) 300 mm
Therefore, Spacing of Stirrups (Sv) = 258 mm ≈ 250 mm
Therefore,  Provide 2-Legged 8 mm Diameter Stirrups at a Spacing of 250 mm c/c.

Step 9 :- Check For Deflection :-

Permissible Deflection (Δ) = Le / 350 = 3004 / 350 = 8.58mm
For Simply Supported Beam B6,

NOTE :- Deflection Should be Checked for Working Loads.
 As, δmax < Δ    …Safe for Deflection

Design of singly reinforced beam (Fig 2)
SECTION A-A’ – Design of singly reinforced beam (Fig 2)

1 thought on “MANUAL DESIGN OF SINGLY REINFORCED BEAM”

Leave a Comment

Your email address will not be published. Required fields are marked *