Manual Design Of Doubly Reinforced Continuous Beam

Manual Design Of Doubly Reinforced Continuous Beam

In this blog, you will learn step by step about the design of doubly reinforced beam of first floor of G+5 building procedure using I.S. 456:2000. For daily blogs, subscribe to our blog page and learn complete information about the structural engineering industry Given:- 1) Grade of Concrete = M202) Grade of Steel = Fe5003) Clear Cover to Reinforcement (c) = 25 mm4) Length of Beam :-  B24 & B25 = 4060 mm5) Unit Weight of Concrete = 25 kN/m26) Slab Dimensions :- S3 = (1975 mm X 4060 mm) & S4 = (3050 mm X 4060 mm)7) Floor to Floor Height (H) = 3000 mm Step 1 :- Trial Dimension of The Beam :- Assume the Width of The Beam (b) = 230 mmEffective Depth of Beam (d) = (L/10) to (L/15) = (4290/10) to (4290/15)                                               = 429 mm to 286 mm                                  Take, d = 325 mmAssume, 20 mm Diameter Bars are to be Provided  at a Clear Cover of 25 mm.Therefore,  Overall Depth (D) = 325 + (20/2) + 25 = 360 mm ≈ 375 mm…(Rounded off on Higher Side)Therefore, Effective Depth of Beam Provided (d) = 375 – (20/2) – 25 = 340 mm  Step 2 :- Effective Span (Le) :- Minimum of The Following , i) Le = L + d = 4060 + 340 = 4400 mmii) Le = L + Bearing = 4060 + 230 = 4290 mmTherefore, Effective Span (Le) = 4290 mm Step 3 :- Load Calculations :- Load on Beam B24 & B25 :-i) Super Imposed Dead Load (SIDL) :-Wall Load = Wall Thickness X Floor to Floor Height X Unit Weight of Bricks                   = (0.150 X 3 X 20) = 9 kN/m                  …(No Deduction of Depth of Beam is Made From Floor to Floor Height)ii) Slab Load Transferring on Beam :-Slab S3 :-a) Self Weight of Slab (DL) = D X Unit Weight of Concrete                                             = 0.125 X 25                                             = 3.125 kN/m2b) Live Load (LL) = 2 kN/m2  …[Refer Table No. 1 , Page No. 7 , I.S. 875  (Part 2) : 1987]c) Super Imposed Dead Load (SIDL) =Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)                     = (0.05 X 24) + (0.01 X 22)    …[Refer I.S. 875 (Part 1) : 1987]                     = 1.42 kN/m2                     ≈ 1.5 kN/m2Total Load of Slab S3 (w)  = 3.125 + 2 + 1.5 = 6.625 kN/m2 Trapezoidal Load of  Slab S3 is Transferring  on Beam B24 & B25 Because S3 Slab is Two Way Slab Which is Given by,WS3 = [{(w. Lx)/2} X {1- (1/ 3. β2)}]       Where, β = l_y/l_x       = {(6.625 X 1.975 ) / 2} X [1- {1/ 3 X (4.06/1.975)2}]       = 6.02 kN/mSlab S4 :-a) Self Weight of Slab (DL) = D X Unit Weight of Concrete                                             = 0.125 X 25                                             = 3.125 kN/m2b) Live Load (LL) = 2 kN/m2  …[Refer Table No. 1, Page No. 7, I.S. 875  (Part 2) : 1987]c) Super Imposed Dead Load (SIDL) =Floor Finish = Wt. of Screeding (50 mm Thk.) + Flooring (10 mm Thk.)                    = (0.05 X 24) + (0.01 X 22)  … (Refer I.S. 875 (Part 1) : 1987)                    = 1.42kN/m2 ≈ 1.5 kN/m2Total Load of Slab S4 (w)  = 3.125 + 2 + 1.5 = 6.625 kN/m2 Trapezoidal Load of Slab S4 is Transferring  on Beam B24 & B25 Which is Given by,WS4 = [{(w. Lx)/2} X {1- (1/ 3. β2)}]       ={(6.625 X 3.05) / 2} X [1- {1/ 3 X (4.06/3.05)2}]       = 8.2 kN/mTherefore, Total Load of Slabs Transfers on Beam B24 & B25 = WS1 + WS4                                                                                                    = 6.02 + 8.2                                                                                                    = 14.22  kN/miii) Self Weight of Beam (DL) = b X D X Unit Weight of Concrete                                                 = 0.230 X 0.375 X 25                                                 = 2.156 kN/m Total Load on Each Beam B24 & B25 (W) = 9 + 14.22 + 2.156 = 25.376 kN/m                                                                                                      ≈ 25.4 kN/mUltimate Load (Wu) = 25.4 X 1.5 = 38.1 kN/m Step 4 :- Bending Moment (Mu) :- Max. Moment on ContinuousBeam (B24 & B25)  is (M) = W . Le2 / 8                                            = (25.4 X 4.292) / 8                                            = 58.43 kN.mUltimate Moment on ContinuousBeam (B20 & B21)  is (Mu) =58.43X 1.5 = 87.65 kN.m CONTINUOUS BEAM HAVING TWO EQUAL SPAN CARRYING UNIFORMALLY DISTRIBUTED LOAD (UDL) OVER ENTIRE SPAN :- Step 5 :- Limiting Moment of Resistance :- Mulim= 0.133 fck.b.d2Mulim= 0.133 X 20 X 230 X 3402Mulim= 0.133 X 20 X 230 X 3402Mulim= 70724080 NMulim= 70724080 / 106Mulim= 70.72 kN.mAs, Mulim<  Mu Note :- Either We Have to Increase Depth and Design as a Singly Reinforced Beam or if We Are Not Allowed to Increase Depth of Beam Then We Will Design the Beam as a Doubly Reinforced Beam. So We Design Assumed Beam of 230 X 375 mm As Doubly Reinforced Beam. Step 6 :- Balanced Moment (Mu2) :-                                 Equate,  Mu2 = Mu – Mulim Mu2 = 87.65 –  70.72                                Mu2 = 16.93 kN.m Step 7 :- Area of Steel Calculation (Ast) :- [Refer Cl. No. 26.5.1.1 (a) & (b), Page No. 46 & 47,I.S. 456 : 2000] Astmin = As/bd = 0.85/ FyAstmin= As = [(0.85 X 230 X 340) / 500]Astmin= As = 132.94 mm2Astmax = 0.04 b.D = 0.04 X 230 X375          = 3450 mm2 i) Steel in Tensile Zone :-Astreq= Ast1+Ast2 [For kumax & fsc Refer above Tables From, Illustrated  Design of Reinforced Concrete Buildings by S. R. Karve & V. L. Shah] ii) Steel in Compression Zone :-dc / d= (D – d) / d = (375 – 340) / 340 = 0.1By Interpolation,fsc = 412 N/mm2     …Refer Table 4.2.2 Step 8 :- Check For Shear :- Codal Provisions for Shear :- [Refer Cl. No. 26.5.1.6, Page No. 48 & Cl. No. 40.1, 40.3, Page No. 72 of  I.S. 456 : 2000] i) Maximum Shear Force (Vu) :-V = (5.W . Le/ 8)     = [(5 X 25.4 X 4.29) / 8]     = 68.1 kNVu= 68.1 X 1.5 = 102.15 kN ii) Nominal Shear Stress (τv) :-τv = Vu / b.d   

Manual Design Of Doubly Reinforced Continuous Beam Read More »